教育部 2019 年"西门子杯"中国智能制造挑战赛 智能制造工程设计与应用类赛项:信息化网络化方向 全国总决赛-赛题(高职组)

参赛队编号:_____

上机操作总分:_____

上机操作用时: 小时 分钟 秒

一、工厂网络描述

工厂网络拓扑结构图如图1所示。工厂包含两个工艺单元,工艺单元1中有两个PLC,工艺单元2中 有1个PLC,用于控制工艺单元内部生产加工操作。工艺单元1中作为PROFINET IO 设备的PLC 通过工业 无线通讯系统与交换机与作为PROFINET IO 控制器的PLC 进行实时通讯。工艺单元2与生产主干网络控制 中心通过安全模块进行隔离。为了工业信息安全考虑,办公区域的网络与控制中心网络之间使用安全模块

进行隔离。

图 1 网络拓扑结构图

二、任务要求

1 工厂网络规划

进行合理的网络规划并进行 IP 地址和子网掩码的设置。

2 工艺单元1 网络结构和功能的实施

(1) 配置交换机 SCALANCE XB208, 使得工艺单元1中的两个 S7 1200 属于 VLAN 10, 且 P3 端口也

属于 VLAN 10。

- (2) 对作为 IO 设备的 S7 1200 进行配置
 - 1) 设置 IP 地址为 192.168.10.11
 - 2) 在"默认变量"表中添加 2 个变量, 说明如下:

名称	数据类型	地址	与"工艺单元 1"的操作面	说明		
			板对应关系			
准备装配	Bool	%10.1	对应 DI 1 开关	向上拨动时,取值为 True,代表装		
				配准备工作完成。向下拨动时,取		
				值为 False,代表没有准备完成。通		
				过 PROFINET,将该变量值传输给工		
				艺单元 1 中 PN IO 控制器 S7 1200		
				的"准备装配"变量。		
装配	Bool	%Q0.2	对应 DQ 2 指示灯	通过 PROFINET,该变量值来自于工		
				艺单元1中 PN IO 控制器 S7 1200		
				的"装配"变量。		
				取值为 True,指示灯亮,代表收到		
				装配指令,处于装配状态;取值为		
				False,指示灯灭,代表没有收到 S7		
				1200 的装配指令,该工序处于空闲		
				状态。		

3) 进行 PROFINET IO 设置及 S7 1200 编程, 目的是将"准备装配"变量值传输给"PN IO 控制器"的"准备装配"变量; 同时接收"PN IO 控制器"的"装配"变量值。

(3) 对作为 PN IO 控制器的 S7 1200 进行配置

1) 设置 IP 地址为 192.168.10.12

2) 在"默认变量"表中添加 2 个变量, 说明如下:

名称	数据类型	地址	与"工艺单元 1"的操作	说明		
			面板对应关系			
准备装配	Bool	%Q0.1	对应 DQ 1 指示灯	通过 PROFINET, 该变量值来自于工		
				IO 设备的"准备装配"变量		
				取值为 True, 指示灯亮, 代表收到 IO		
				设备的准备装配完成的消息;取值为		
				False,指示灯灭,代表没有收到此消		
				息。		
装配	Bool	%10.2	对应 DI 2 开关	向上拨动时, 取值为 True, 代表向 IO		
				设备发送"装配"指令。向下拨动时,		

		取值为 False,代表没有发送该指令。
		通过 PROFINET,将该变量值传输给
		作为 IO 设备的 S7 1200 的"装配"变
		皇。

3) 进行 PROFINET IO 设置及 S7 1200 编程,目的是接收 IO 设备的 S7 1200"准备装配"变量值;同时将"装配"变量值传输给 IO 设备"装配"变量。

(4) 配置无线网络

配置 IO 设备与 IO 控制器之间通讯的无线网络: 配置 SCALANCE W774 和 W734, SCALANCE W774 作为无线接入点, SCALANCE W734 作为无线客户端。

3 工艺单元 2 网络结构和功能的实施

- (1) 对 S7 1200 进行配置
 - 1) 设置 IP 地址为 192.168.20.11

2) 在"默认变量"表中添加1个变量, 说明如下:

名称	数据类型	地址	与"工艺单元 2"的操作面	说明
			板对应关系	
入库	Bool	%10.0	对应 DI 0 开关	向上拨动时,取值为 True,代表
				正在处于入库状态。向下拨动时,
				取值为 False,代表没有处于入库
				状态。

4 构建生产主干网络

配置交换机 SCALANCE XM408 和两个 SCALANCE XB208, 使得三个交换机能够形成环形冗余网络, 其中 SCALANCE XM408 交换机作为冗余管理器。

5 控制中心网络结构和功能的实施

- (1) 配置 XM408 交换机,其中:
 - 1) P2 端口分配给 VLAN 10, 网关 192.168.10.1, 子网掩码 255.255.255.0
 - 2) P5 端口分配给 VLAN 60, 网关 192.168.60.1, 子网掩码 255.255.255.0
 - 3) P1 端口分配给 VLAN 70, 网关 192.168.70.1, 子网掩码 255.255.255.0
- (2) 工程师站

1) 工程师站的 IP 地址为 192.168.60.100, 子网掩码为 255.255.255.0, 网关为 192.168.60.1

2) 在工程师站的 TIA Portal Step7 中, 可以在线监视工艺单元1和工艺单元2 中 PLC 的变量数值。

6、配置工艺单元 2。

(1) 配置控制中心中的 SCALANCE XM408 交换机,其中:

1) P3 端口分配给 VLAN 40, 网关 192.168.40.1, 子网掩码 255.255.255.0

(2) 配置与工艺单元 2 连接的 SCALANCE XM408 交换机,其中:

1) P8 端口分配给 VLAN 30, 网关 192.168.30.1, 子网掩码 255.255.255.0

2) P1 端口分配给 VLAN 40, 网关 192.168.40.2, 子网掩码 255.255.255.0

(3) 配置工艺单元 2 中的信息安全模块 S615, 其中:

- 1) 将 P1 端口划分在 VLAN1, 网关由参赛队指定
- 2) 将 P5 端口划分在 VLAN 2, 网关由参赛队指定

(4) 配置 NAPT 功能、必要的防火墙功能等,使得使用控制中心的工程师站访问工艺单元 2 的 S7 1200 时,能通过访问网关地址 192.168.30.2:端口号访问 S7 1200 的 WEB 界面,能够监控 S7 1200 的变量状态。

7 配置办公区网络与控制中心网络之间的信息安全模块 S615,其中:

- (1) 将 P5 端口分配给 VLAN 2, 网关由参赛队指定
- (2) 将 P1 端口分配给 VLAN1, 网关由参赛队指定
- (4) 配置防火墙功能及必要的其他网络功能, 使得:

只允许 IP 地址为 10.10.0.100 的远程维护主机访问控制中心的工程师站、工艺单元 1 中作为 IO 控制器的 S7 1200 和工艺单元 2 中的 S7 1200。

8 远程维护主机

远程维护主机的 IP 地址为 10.10.0.100, 子网掩码为 255.255.255.0, 网关由参赛队设定。

三、功能测试与评分(满分100分)

达到要求的得分,不达到要求的不得分。

序号	评分项	具体描述	所占 分值	得分 (打钩)
1	网络结构 实施	根据"图 1 网络拓扑结构图",所有设备连接到要求的端口号上,且与图 5 模块所属网络分配相对应。	10	
2	检查指示 灯状态	2.1 控制中心交换机 SCALANCE XM408 的 RM 指示灯亮 处于环网冗余激活状态的端口指示灯常亮或快闪, 处于环网冗余热备状 态的端口指示灯慢闪	4	
		2.2 工艺单元 1 中的无线模块 W774 的"R1"指示灯亮	3	
		2.3 工艺单元1中的无线模块W734的"R1"指示灯亮	3	
3	网 整 小 动	3.1 IP 地址为 192.168.60.100 的工程师站能够 ping 通工艺单元 1 中作为 IO 控制器的 S7 1200 的 IP 地址 192.168.10.12	4	
		3.2 在工程师站的 TIA Portal Step7 中,可以在线监视工艺单元 1 中作为 IO 控制器的 S7 1200 的"准备装配"和"装配"变量数值	4	
		3.3 在工艺单元1中拨动作为IO设备的S7 1200 对应"操作面板1"的DI1 开关,在工程师站的TIA Portal Step 7 中,可以在线监视作为IO 控制器 的S7 1200 的"准备装配"的变量数值变化,同时"操作面板2"的DQ1 状态与变量数值变化一致	4	
		3.4 在工程师站的浏览器中输入 http://192.168.30.2:端口号, 可以登录 到"工艺单元 2"中 S7 1200 的 WEB 界面	3	
		3.5 在工程师站的 TIA Portal Step7 中,可以在线监视工艺单元 2 中 S7 1200 的"入库"变量数值	4	
		3.6 IP 地址为 10.10.0.100 的远程维护主机能够 ping 通工艺单元 1 中作 为 IO 控制器的 S7 1200 的 IP 地址 192.168.10.12	4	
		3.7 在远程维护主机的 TIA Portal Step7 中,可以在线监视工艺单元 1 中 作为 IO 控制器的 S7 1200 的"准备装配"和"装配"变量数值	4	
		3.8 在工艺单元1中拨动作为IO设备的S7 1200 对应" 操作面板1 "的DI1 开关,在远程维护主机的TIA Portal Step 7 中,可以在线监视作为 IO 控 制器的 S7 1200 的"准备装配"的变量数值变化,同时" 操作面板 2 "的 DQ1 状态与变量数值变化一致	4	

		3.9 在远程维护主机的浏览器中输入 http://192.168.30.2:端口号,可以 登录到"工艺单元 2"中 S7 1200 的 WEB 界面	3	
		3.10 在远程维护主机的 TIA Portal Step7 中,可以在线监视工艺单元 2 中 S7 1200 的"入库"变量数值	4	
		3.11 IP 地址为 10.10.0.100 的远程维护主机能够 ping 通控制中心工程师 站的 IP 地址 192.168.60.100	3	
		 3.12 在"3.11"测试通过情况下,测试本项,如果"3.11"测试不通过,本项目 0 分。 (1)将远程维护主机的 IP 地址修改为 10.10.0.101 (2)远程维护主机 ping 控制中心工程师站的 IP 地址 192.168.60.100,不能 ping 通 	4	
	网络冗余 重构测试	4.1 将控制中心 XM408 的用于环网冗余通讯的处于激活状态的端口(P4 或 P8)的线缆拔掉,处于环网冗余热备状态的端口指示灯变常亮或快 闪	3	
4		4.2 IP 地址为 192.168.60.100 的工程师站能够 ping 通工艺单元 1 中作为 IO 控制器的 S7 1200 的 IP 地址 192.168.10.12	3	
		4.3 在工程师站的 TIA Portal Step7 中,可以在线监视工艺单元 2 中 S7 1200 的"入库"变量数值	3	
5	工艺单	5.1 将工程师站与工艺单元 1 中 XB208 的 P3 端口连接,工程师站 IP 地 址修改为 192.168.10.100。 工程师站能够 ping 通工艺单元 1 中作为 IO 控制器的 S7 1200 的 IP 地址 192.168.10.12	4	
		5.2 在工程师站的 TIA Portal Step7 中,可以在线监视工艺单元 1 中作为 IO 控制器的 S7 1200 的"准备装配"和"装配"变量数值	4	
		5.3 在工艺单元 1 中拨动作为 IO 控制器的 S7 1200 对应"操作面板 2"的 DI 2 开关,在工程师站的 TIA Portal Step 7 中,可以在线监视作为 IO 设 备的 S7 1200 的"装配"的变量数值变化,同时"操作面板 1"的 DQ2 状态 与变量数值变化一致	4	
		5.4 将作为 IO 设备的 S7 1200 直接与 XB208 的 P4 端口连接,如下图所示。 在工艺单元 1 中拨动作为 IO 设备的 S7 1200 对应" 操作面板 1 "的 DI 1 开关,在工程师站的 TIA Portal Step 7 中,可以在线监视作为 IO 控制器 的 S7 1200 的"准备装配"的变量数值变化,同时" 操作面板 2 "的 DQ1 状 态与变量数值变化一致	4	

附录——竞赛设备说明

如图 5 所示:

- 1、 两套并排摆放的设备为一组, 构成竞赛设备。
- 2、 模块下方的"控制中心"、"工艺单元1"、"工艺单元2"和"主干环网"标签分别代表该模块属于"控制中心网络"、"工艺单元1网络"、"工艺单元2网络"和"主干环网"。其它未贴标签的模块自由安排使用。

图 5 模块所属网络分配